

#### Overview of the National Nanotechnology Initiative

#### M.C. Roco

Senior Advisor for Nanotechnology, NSF Chair, Subcommittee on Nanoscience, Engineering and Technology (NSET), National Science and Technology Council (NSTC)

- NNI motivation and timeline
- > Overview of NNI, and planning for the next 5 years
- > International perspective
- > NNI areas of focus and partnerships

PCAST, WH. September 10, 2003



### Nanotechnology

Definition on www.nano.gov/omb\_nifty50.htm (2000)



- Working at the atomic, molecular and supramolecular levels, in the length scale of approximately 1 – 100 nm range, in order to understand and create materials, devices and systems with fundamentally new properties and functions because of their small structure
- NNI definition encourages new contributions that were not possible before.
  - <u>novel phenomena, properties and functions at nanoscale,</u> which are nonscalable outside of the nm domain
  - the ability to measure / control / manipulate matter at the nanoscale in order to change those properties and functions
  - integration along length scales, and fields of application

# Why moving into nanoworld? A. Intellectual Drive

- Miniaturization is of interest
  - Less space, faster, less material, less energy

#### **More important:**

- Novel properties/ phenomena/ processes
  - New structures and functions; Engineering beyond nature
- Unity and generality
  - At the building blocks of all natural/artificial things; Systems!
- Most efficient length scale for manufacturing
  - Less energy than for subatomic or macroscopic
- Transcendent effects: at the confluence of steams
  - S&T; Living/non-living; Interdisciplinarity; Relevance areas

It requires a grand coalition, cooperative national program Cross-cutting, precompetitive, with broad societal implications



### B. Broad societal implications

(examples of societal implications; worldwide estimations made in 2000, NSF)

- □ **Knowledge base**: better comprehension of nature, life
- New technologies and products: ~\$1 trillion / year by 2015
  (With input from industry US, Japan, Europe 1997-2000, access to leading experts)

Materials beyond chemistry: \$340B/y Elect

Pharmaceuticals: \$180 B/y

Aerospace about \$70B/y

Electronics: over \$300B/y

Chemicals (catalysts): \$100B/y

Tools  $\sim$  \$22 B/y

Est. in 2000 (NSF): about \$40B for catalysts, GMR, materials, etc.

Est. in 2002 (DB): about \$116B for materials, pharmaceuticals and chemicals

Would require worldwide ~ 2 million nanotech workers

- ☐ Improved healthcare: extend life-span, its quality, physical capabilities
- □ Sustainability: agriculture, food, water, energy, materials, environment; ex: lighting energy reduction ~ 10% or \$100B/y

  MC. Roco, 9/10/03



# C. Timeline for beginning of industrial prototyping and commercialization

Accidental nanotechnology: since 1000s yr (carbon black)

Isolated applications (catalysts, composites, others) since 1990

- First Generation: <u>passive nanostructures</u>
   in coatings, nanoparticles, bulk materials (nanostructured metals, polymers, ceramics):
   ~ 2001 –
- Second Generation: <u>active nanostructures</u>
   such as transistors, amplifiers, targeted drugs and chemicals, actuators, adaptive structures:
   2005 –
- Third Generation: <u>3D nanosystems</u>
   with heterogeneous nanocomponents and various assembling techniques; bio-assembling;
   networking at the nanoscale and new architectures
  - ~ 2010 -
- Fourth Generation: molecular nanosystems
   with heterogeneous molecules, based on biomimetics and new designs
   2020 (?) -

#### Example:

### Applications of various nanostructures in a car

Sample of companies involved: GM, Ford, Toyota, Mitsubishi, BMW, all tire companies: there is no major part of car that has not yet been affected by nanotechnology (2003) Ex: "Nano in Cars" consortium in Germany - 6 car manufacturers, 10 suppliers, and 26 R&D university and laboratories





# NATIONAL NANOTECHNOLOGY INITIATIVE - from vision to the investment strategy

- Timeline (Preparing NNI) -

March 1991 "Nanoparticle Synthesis and Processing" (NSF program)

Nov. 1996 Nanotechnology Group (bottom-up)

March 1998 Functional Nanostructures; Partnership in nanotechnology

(NSF in collaboration with other agencies)

Sept. 1998 NSTC establishes Interagency Working Group of

Nanoscience and Engineering (IWGN)

March 1999
 OSTP/CT presentation on NNI, Indian Treaty Room

May-Sept. 1999 Congress hearings; Three publications NSTC/IWGN;

Nanotechnology R&D planning in six agencies

IWGN planning for NNI

• Oct. - Dec. 1999 OMB review - NNI the only new topic recommended

PCAST - Letter to the President supporting NNI

OSTP and WH Approval

Jan. 2000 NNI announced by the President in Jan 2000



# NATIONAL NANOTECHNOLOGY INITIATIVE - from vision to the investment strategy

- Timeline (FY 2001-2003) -

• Feb. - Dec.. 2000

WH, Congress review and approve FY 2001 NNI 6 agencies; actual investment \$465M

Concerns about the interest, "science fiction" "Societal Implications" workshop in Sept. 2000

• Feb. - Dec. 2001

WH and Congress approve FY 2002 NNI 12 agencies; actual investment \$697M

International reaction: programs in 30 countries Industry get involved in many sectors 20 states and regional alliances begin to invest

● Feb. –Dec. 2002

WH and Congress approve FY 2003 NNI - both sides

16 agencies; Current plan - \$770M

Outcomes: research, education, industry and states investments, patents, IPO; GMO perspective Letter from OSTP-OMB with NNI as a priority

• Feb. -Dec. 2003

WH Request - \$849M; 2 Bills in Congress for FY04-08

#### Defining the vision and implementation plan

### **National Nanotechnology Initiative**



Reports

Worldwide benchmark



Societal implications

Brochure for public



Planning with feedback after each: 5 years, 1 year, 1 month; and various levels: national/NSET, agency, program

In preparation: Topical reports; new 2004:10 year vision



# Planning for the future: expanding the frontiers of nanotechnology

#### Workshops for receiving input from the community (examples):

- Nanostructured materials "by design" Workshops on 10/02, 06/03
- Catalysts that function at the nanoscale Workshop on 06/03
- Nanoelectronics, optoelectronics and magnetics Workshops 11/02, Fall 03
- CBRE protection and detection (revised in 2002) Workshop 05/02
- Advanced healthcare, therapeutics, diagnostics Workshops 06/00
- Nano-biology and medicine Workshop Fall 03
- Environmental improvement Workshops 06/02, 08/02, Spring 03
- Efficient energy conversion and storage Workshops 10/02, 01/03
- Microcraft space exploration and industrialization Workshop Fall 03
- Manufacturing processes Workshops 01/02, 05/02
- Agriculture and food systems Workshop 11/02
- Societal implications (II) Workshop 12/03

"Nanotechnology Research Directions (II)" - 2004

Revisit the NNI long-term vision formulated in January 1999

# Organizations that have prepared and contribute to the National Nanotechnology Initiative (NNI)



Estimation: Federal Government R&D funding NNI (~\$700M in 02)
Industry (private sectors) ~ NNI funding
State and local (universities, foundations) ~ 1/2 NNI funding

## Interdisciplinary "horizontal" knowledge creation vs. "vertical" transition from basic concepts to Grand Challenges

#### **Revolutionary Technologies and Products**



**Grand Challenges** 

Fundamental research at the nanoscale

Knowledge creation: same principles, phenomena, tools
Basic discoveries and new areas of relevance

Infrastructure

Workforce

**Partnerships** 

M.C. Roco, NSF, 9/10/03

#### **Elements of NNI**

- Fundamental Research
   Provides sustained support to individual investigators and small groups doing fundamental, innovative research
- Grand Challenges
   for research on major, long-term objectives
- Centers and Networks of Excellence for interdisciplinary research, networking, industry partnerships
- Research Infrastructure metrology, instrumentation, modeling/simulation, user facilities
- Societal Implications and Workforce Education and Training for a new generation of skilled workers; the impact of nanotechnology on society: legal, ethical, social, economic (\* these budgets do not include education and training through research grants)

### NNI: R&D Funding by Agency

| Fiscal year<br>(all in million \$)     | 2000      |      | <b>001</b><br>d/actual | 2002<br>Enacted | _             | <b>2003</b> | <b>2004</b><br>Request |
|----------------------------------------|-----------|------|------------------------|-----------------|---------------|-------------|------------------------|
| National Science Foundation            | 97        | 150  | /150                   | 199             | /204          | 221         | 249                    |
| Department of Defense                  | 70        | 110  | /125                   | 180             | <i>1</i> 224  | 243         | 222                    |
| Department of Energy                   | 58        | 93   | /88                    | 91.1            | <i>1</i> 89   | 133         | 197                    |
| National Institutes of Health          | <b>32</b> | 39   | /39.6                  | 40.8            | <b>3</b> /59  | 65          | 70                     |
| NASA                                   | 5         | 20   | /22/                   | 35              | <i>l</i> 35   | 33          | 31                     |
| NIST                                   | 8         | 10   | /33.4                  | 37.0            | 6 <i>1</i> 77 | 66          | <b>62</b>              |
| <b>Environmental Protection Agency</b> | -         |      | /5.8                   | 5               | /6            | 5           | 5                      |
| Homeland Security (TSA)                | -         |      |                        | 2               | /2            | 2           | 2                      |
| Department of Agriculture              | -         |      | /1.5                   | 1.5             | /0            | 1           | 10                     |
| Department of Justice                  | -         |      | /1.4                   | 1.4             | /1            | 1.4         | 1.4                    |
| TOTAL                                  | 270.0     | 422. | 0 /464.7               | ~ 600           | /697          | ~ 770       | ~ 849                  |

Other NNI (NSET) participants are: OSTP, NSTC, OMB, DOC, DOS, DOT, DOTreas, FDA, NRC, DHS, IC

### Requested FY 2004 NNI Investment by Agency

| FY04 (preliminary distribution)           | NNI total | DOD | DOE | DOJ | DHS | EPA | NASA | NIH | NIST | NSF | USDA |
|-------------------------------------------|-----------|-----|-----|-----|-----|-----|------|-----|------|-----|------|
| Fundamental Research                      | 278       | 26  | 57  |     |     |     | 10   | 28  |      | 152 | 5    |
| Biosystems                                | 69        | 6   | 4   |     |     |     | 5    | 28  |      | 21  | 5    |
| Phenomena, structures, and tools          | 105       | 18  | 28  |     |     |     | 1    |     |      | 58  |      |
| Devices and systems                       | 44        |     | 14  |     |     |     | 2    |     |      | 28  |      |
| Theory, modeling, and simulation          | 30        |     | 6   |     |     |     | 2    |     |      | 22  |      |
| Environmental knowledge                   | 14        |     | 4   |     |     |     |      |     |      | 10  |      |
| Manufacturing knowledge                   | 14        |     | 1   |     |     |     |      |     |      | 13  |      |
| Grand Challenges                          | 301.4     | 143 | 42  | 1.4 | 2   | 5   | 9    | 39  | 45   | 10  | 5    |
| Nanostructured Materials by Design        | 66.4      | 37  | 16  | 0.4 |     |     | 3    |     | 7    | 2   | 1    |
| Nanoelectronics, Optoelectronics, Magneti | 104.5     | 89  | 8   | 0.5 |     |     | 3    |     | 3    | 1   |      |
| Advanced Healthcare, Therapeutics         | 40        |     |     |     |     |     |      | 39  |      | 1   |      |
| Environmental Improvement                 | 11        |     | 4   |     |     | 5   |      |     |      | 1   | 1    |
| Energy Conversion/Storage                 | 12        | 2   | 10  |     |     |     |      |     |      |     |      |
| Microcraft & Robotics                     | 3         |     |     |     |     |     | 3    |     |      |     |      |
| CBRE Protection/Detection (was Bionanoc   | 22        | 15  | 0.5 | 0.5 | 2   |     |      |     |      | 2   | 2    |
| Instrumentation & Metrology               | 31        |     | 2   |     |     |     |      |     | 28   | 1   |      |
| Manufacturing Processes                   | 11.5      |     | 1.5 |     |     |     |      |     | 7    | 2   | 1    |
| Centers/Networks                          | 106       | 46  | 2   |     |     |     | 12   |     |      | 46  |      |
| Infrastructure*                           | 145       | 5   | 96  |     |     |     |      | 2   | 14   | 28  |      |
| Societal and Education**                  | 19        | 2   |     |     |     |     |      | 1   | 3    | 13  |      |
| TOTAL                                     | 849.4     | 222 | 197 | 1.4 | 2   | 5   | 31   | 70  | 62   | 249 | 10   |

### Scientific Breakthroughs

in the first three years (NNI, 2001-2003)

#### Developments faster than expected

Reducing the time of reaching commercial prototypes by at least of factor of two for several key applications

#### 10 key advancements

- Engineer materials with atomic precision using biosystems as agents
- Create circuits with the logic element a molecule wide
- Assemble DNA, nanocrystals to build molecular devices and systems
- Detect anthrax, other contaminants with unprecedented speed
- Single molecule behavior and interaction
- Artificial genetic system
- Conducting polymers
- New concepts for large scale production of nanotubes, their use
- Drug delivery systems
- Detection of cancer

## Grand Challenges (NNI, FY 2002)

| <ul> <li>Nanostructured materials "by design" (NSF lead)</li> </ul>               | ~ 22% |
|-----------------------------------------------------------------------------------|-------|
| <ul> <li>Nanoelectronics, optoelectronics and magnetics (DOD lead)</li> </ul>     | 39%   |
| <ul> <li>Advanced healthcare, therapeutics, diagnostics (NIH lead)</li> </ul>     | 8%    |
| <ul> <li>Environmental improvement (lead EPA and NSF)</li> </ul>                  | 4%    |
| <ul> <li>Efficient energy conversion and storage (DOE)</li> </ul>                 | 5%    |
| <ul> <li>Microcraft space exploration and industrialization (NASA lead</li> </ul> | d) 3% |
| <ul> <li>CBRE Protection and Detection (revised in 2002) (DOD lead)</li> </ul>    | 7%    |
| <ul> <li>Instrumentation and metrology 9NIST and NSF lead)</li> </ul>             | 6%    |
| <ul> <li>Manufacturing processes (NSF and NIST lead)</li> </ul>                   | 5%    |
| (details in the NNI Implementation Plan, http://nano.gov)                         |       |

### Key areas of relevance in FY 2004 Request

(single counted, without cross-cutting, all in \$ million)

| <ul><li>Materials</li></ul>                                   | 141 |
|---------------------------------------------------------------|-----|
| <ul><li>Electronics</li></ul>                                 | 179 |
| total 320                                                     |     |
| <ul><li>Energy</li></ul>                                      | 12  |
| <ul><li>Environment</li></ul>                                 | 25  |
| total 37                                                      |     |
| <ul><li>Bio-medical</li></ul>                                 | 109 |
| <ul> <li>Societal and<br/>Educational Implications</li> </ul> | 19  |
| total 138                                                     |     |

# Revolutionary technologies, products and services

#### Growing area

- Materials, including bulk, coating, dispersed systems
- Chemicals, including catalysts
- Pharmaceuticals
- > Electronics

#### Emerging areas

- Nanomedicine
- Energy conversion and storage
- Agriculture and food systems
- Molecular architectures
- Realistic multiphenomena/multiscale simulations
- Environmental implications
- Improving human performance



#### Centers and networks

# Overall: 22 new large centers and networks supported by NNI since 2001

- 10 NSF (8 NSECs, 2 networks)
- 5 DOE (including 6 national labs) large R&D facilities
- 3 DOD (including Soldier Nanotech at MIT in 2002)
- 4 NASA (at universities in 2002)

## Examples of academic-based networks (NSF) New since 2001

- Network for Computational Nanotechnology (NCN)
   7 universities (Purdue as the central node)
- National Nanotechnology Infrastructure Network
   User facility
   Development measuring & manufacturing tools
   Education and societal implications
- Oklahoma Nano Net (EPSCoR award)

# Nanotechnology in the world Comparison for industrialized countries 1997-2002

### Estimated government sponsored R&D in \$ millions/year

using NNI nanotechnology definition (without MEMS, other microstructures)

| Fiscal Year | 1997            | 2001                    | 2002                    | 2003  | <b>2004</b> R |
|-------------|-----------------|-------------------------|-------------------------|-------|---------------|
| W. Europe   | 126             | ~ 225 (270)             | ~ 400                   | ~ 650 |               |
| Japan       | 120             | 465                     | ~ 720                   | ~ 800 |               |
| USA         | 116             | 422 (465)               | ~ 600 (697)             | 770   | 849           |
| Others      | 70              | ~ 380                   | ~ 550                   | ~ 800 |               |
| Total       | <b>432</b> 100% | <b>1492</b> (1580) 365% | <b>2250 (236</b> ) 5479 |       | 849           |

Others: Australia, Canada, China, E. Europe, FSU, Israel, Korea, Singapore, Taiwan

Note: () Actual budget

# Context – Nanotechnology in the World Government investments 1977-2003



#### Note:

- U.S. begins FY in October, six months in advance of EU & Japan (in March/April)
- U.S. does not have a commanding lead as it had in other S&T megatrends, such as BIO, IT, space exploration, nuclear;
   U.S. ~ 35% in 2000, ~ 25% in 2003

### Nanotechnology patents per region (NSF, 2003)

Searched by keywords at USPTO: nano\*, atomic force microscop\*, atomistic/molecular simulation, biomotor, molecular device, molecular electronics, molecular modeling, molecular motor, molecular sensor, quantum computing, quantum dot\*, quantum effect\*, scanning tunneling microscop\*, selfassembl\*





# Technology field analysis by year

www.nsf.gov/nano (Longitudinal Nanotechnology Patent Analysis, from J. of Nanoparticle Research, 2003)

### Geographical distribution (Ex: NSF awards, FY 2002)





# Education and Training

- Integrated Research and Education Make Every Lab a Place of Learning (over 6,000 trained per year)
- Curriculum development
   New courses, 8 IGERT, Nanotech Undergrad Education
- Education and outreach programs
   from K-12 to G; includes NSEE; science museums
- International education opportunities
   young researchers to Japan and Europe; REU sites;
   attend courses abroad; PASI Latin America, NSF-E.C.;
   bi-lateral workshops and exchanges

# Societal Implications: Follow-up of the September 2000 report

- Make support for social, ethical, and economic research studies a priority:
  - (a) New theme in the NSF program solicitations;
  - (b) Centers with societal implications programs;
  - (c) Initiative on the impact of technology, HSD
- NNCO communicate with the public and address unexpected consequences



http://nano.gov

- Basic reference for the interaction with the public
- Taking faster advantage of the benefits
- Converging technologies from the nanoscale
- International workshop with EC (2001); links to Asia

Environmental real issues: combustion, welding, water filtration, cell behavior, etc. and media highlights



### Regional alliances

- Nanotechnology Alliance in Southern California <u>www.larta.org/Nano</u>
- Nanotechnology Franklin Institute, Pennsylvania

www.sep.benfranklin.org/resources/nanotech.html

Texas Nanotechnology Initiative <a href="www.texasnano.org">www.texasnano.org</a>

Virginia Nanotechnology Initiative <u>www.INanoVA.org</u>

Denver Nano Hub <u>www.nanobusiness.org/denver.html</u>

Silicon Valley, San Diego and Michigan Nano Hubs
 May 2002

Massachusetts Nanotech Initiative (MNI)
 Jan. 2003

Connecticut Nanotechnology Initiative (CNI)
 Feb. 2003

NSET/NNCO sponsors series of regional research providers / industry / business meetings for networking, www.nano.gov

Others in partnerships in sight: regional; by NanoBusiness Alliance Workshop NNI-regional and state alliances – September 2003

## State participation

#### **Illustrations from 20 states**

| <ul><li>CA</li></ul>    | California NanoSystem Institute                           | \$100M/ 4 yrs        |
|-------------------------|-----------------------------------------------------------|----------------------|
| <ul><li>NY</li></ul>    | Center of Excellence in Nanoelectronics; Albany Center    | \$50M, \$400M/ 5 yrs |
| • IL                    | Nanoscience Center (NU, U III, ANL)                       | \$63M                |
| <ul><li>PA</li></ul>    | Nanotechnology Center                                     | \$37M                |
| <ul><li>GA</li></ul>    | Center at Georgia Tech                                    | \$25M                |
| <ul><li>IN</li></ul>    | Nanotechnology Center                                     | \$5M                 |
| <ul> <li>TX</li> </ul>  | Nanotechnology Center                                     | \$0.5M over 2 yrs    |
| <ul><li>SC</li></ul>    | NanoCenter                                                | \$1M                 |
| <ul><li>AZ</li></ul>    | Nanobio research                                          | \$5M for 20 years    |
| <ul><li>NM</li></ul>    | Consortium University of NM and National labs             |                      |
| <ul><li>NJ</li></ul>    | Support at NJIT and future nanophotonics consortium       |                      |
| <ul><li>FL</li></ul>    | Center at the University of South Florida                 |                      |
| <ul><li>OK</li></ul>    | Nano-Net (~\$3M/yr for 5 years)                           |                      |
| <ul><li>OH (s</li></ul> | support Center \$27M in Columbus). TN (\$24M). Louisiana. | CT. MA. VA. AZ       |



# Congressional bills on nanotechnology (2004-2008)

#### <u>NNI</u>

Bill passed in the House:

H.R.766: "Nanotechnology R&D Act of 2003",

Draft Bill pending in the Senate

189 "21st Century Nanotechnology R&D Act" 5-year "National Nanotechnology Program"



### NNI challenges

- Need for coherent 5-10 year programs
- Horizontal versus vertical S&T development
   0.7% (on basics) versus 5% (plus precompetitive R&D) of US R&D budget
- Strengthening the partnership with industry;
   commercialization and competitiveness issues
- Collaboration and synergism among agencies
- Long-term R&D vision focused on interdisciplinary research and education, development of infrastructure, and broad societal implications
- Need for bold system-oriented programs, focused on topics such as: the new catalyst, new transistor, conditioning the cell
- International collaboration and competition